Introduction to Statistical Machine Learning

Cheng Soon Ong & Christian Walder

Machine Learning Research Group
Data61 | CSIRO
and
College of Engineering and Computer Science
The Australian National University

Canberra February – June 2017

(Many figures from C. M. Bishop, "Pattern Recognition and Machine Learning")

Introduction to Statistical Machine Learning

Ong & Walder
Data61 | CSIRO
The Australian National
University

Part XV

Probabilistic Graphical Models 1

Introduction to Statistical Machine Learning

Ong & Walder
Data61 | CSIRO
The Australian National
University

Motivatio

Bayesian Network

Plate Notation

© 2017 Ong & Walder Data61 | CSIRO The Australian National University

Motivation

avesian Networ

Plate Notation

Conditional Independence

Image Segmentation
 Cluster the gray value representation

Cluster the gray value representation of an image

Neighbourhood information lost
 Need to use the structure of the image.

Motivation via Independence

• Why is the grass wet?

Introduction to Statistical Machine Learning

© 2017 Ong & Walder Data61 | CSIRO The Australian National University

Motivation

Bayesian Network

Plate Notation

Bayesian Network

Plate Notation

Conditional Independence

• Why is the grass wet?

• Introduce four Boolean variables : $C(loudy), S(prinkler), R(ain), W(etGrass) \in \{F(alse), T(rue)\}.$

Motivation via Independence

Model the conditional probabilities

$$p(C = F) | p(C = T)$$

0.2 0.8

С	p(S = F)	p(S = T)
F	0.5	0.5
Т	0.9	0.1

С	p(R = F)	p(R = T)
F	0.8	0.2
Τ	0.2	0.8

SR	p(W = F)	p(W = T)
FF	1.0	0.0
ΤF	0.1	0.9
FΤ	0.1	0.9
ΤT	0.01	0.99

Introduction to Statistical Machine Learning

Ong & Walder
Data61 \ CSIRO
The Australian National
University

Motivation

ian Network

Plate Notation

•	f everything	depends	on	everything
---	--------------	---------	----	------------

CSRW	p(C, S, R, W)
FFFF	
FFFT	
TTTF	
TTTT	

$$\begin{split} p(W, S, R, C) &= p(W \,|\, S, R, C) \, p(S, R, C) \\ &= p(W \,|\, S, R, C) \, p(S \,|\, R, C) \, p(R, C) \\ &= p(W \,|\, S, R, C) \, p(S \,|\, R, C) \, p(R \,|\, C) \, p(C) \end{split}$$

© 2017
Ong & Walder
Data61 | CSIRO
The Australian National

Motivation

Bayesian Network

Plate Notation

Motivation via Independence

Introduction to Statistical Machine Learning

© 2017
Ong & Walder
Data61 | CSIRO
The Australian National

vesian Network

Plate Notation

- Introduction to Statistical Machine Learning
- © 2017
 Ong & Walder
 Data61 | CSIRO
 The Australian National
 University
- DATA |
- Motivation
 - vesian Network
- Plate Notation
- Conditional Independence

- Two key observations when dealing with probabilities
 - Distributive Law can save operations

$$\underbrace{a(b+c)}_{\text{2 operations}} = \underbrace{ab+ac}_{\text{3 operations}}$$

If some probabilities do not depend on all random variables, we might be able to factor them out. For example, assume

$$p(x_1, x_3 | x_2) = p(x_1 | x_2) p(x_3 | x_2),$$

then (using $\sum_{x_3} p(x_3 | x_2) = 1$)

$$p(x_1) = \sum_{x_2, x_3} p(x_1, x_2, x_3) = \sum_{x_2, x_3} p(x_1, x_3 \mid x_2) p(x_2)$$

$$= \sum_{x_2, x_3} p(x_1 \mid x_2) p(x_3 \mid x_2) p(x_2) = \sum_{x_2} p(x_1 \mid x_2) p(x_2)$$

$$O(|\mathcal{X}_1||\mathcal{X}_2||\mathcal{X}_3|)$$

$$O(|\mathcal{X}_1||\mathcal{X}_2||\mathcal{X}_3|)$$

Ong & Walder Data61 | CSIRO The Australian National

Motivation

• How to deal with more complex expression?

 $p(x_1) p(x_2) p(x_3) p(x_4|x_1, x_2, x_3) p(x_5|x_1, x_3) p(x_6|x_4) p(x_7|x_4, x_5)$

© 2017
Ong & Walder
Data61 | CSIRO
The Australian National
University

Motivation

Bayesian Network

Conditional

Independence

• How to deal with more complex expression?

$$p(x_1) p(x_2) p(x_3) p(x_4|x_1, x_2, x_3) p(x_5|x_1, x_3) p(x_6|x_4) p(x_7|x_4, x_5)$$

Graphical models

© 2017
Ong & Walder
Data61 | CSIRO
The Australian National
University

yesian Network

Plate Notation

Conditional Independence

Graphical models

- Visualise the structure of a probabilistic model
- \bullet Complex computations with formulas \to manipulations with graphs
- Obtain insights into model properties by inspection
- Develop and motivate new models

Bayesian Network

Factor Graph

Markov Random Field

Probabilistic Graphical Models

- Graph
 - Nodes (vertices) : a random variable
 - Edges (links, arcs; directed or undirected) : probabilistic relationship
- Directed Graph: Bayesian Network (also called Directed Graphical Model) expressing causal relationship between variables
- Undirected Graph: Markov Random Field expressing soft constraints between variables
- Factor Graph: convenient for solving inference problems (derived from Bayesian Networks or Markov Random Fields).

Bayesian Network

Factor Graph

Markov Random Field

Introduction to Statistical Machine Learning

Ong & Walder
Data61 | CSIRO
The Australian National
University

Motivation

esian Network

Plate Notation

Bayesian Network

$$p(a,b,c) = p(c \mid a,b) p(a,b) = p(c \mid a,b) p(b \mid a) p(a)$$

Introduction to Statistical Machine Learning

Ong & Walder
Data61 | CSIRO
The Australian National
University

monranon

Bayesian Network

Plate Notation

Independence

- p(a,b,c) = p(c | a,b) p(a,b) = p(c | a,b) p(b | a) p(a)
- Draw a node for each conditional distribution associated with a random variable.
- Draw an edge from each conditional distribution associated with a random variable to all other conditional distribution which are conditioned on this variable.

We have chosen a particular ordering of the variables!

riate ivotatioi

Conditional Independence

General case for K variables

$$p(x_1,...,x_K) = p(x_K | x_1,...,x_{K-1})...p(x_2 | x_1) p(x_1)$$

- The graph of this distribution is fully connected. (Prove it.)
- What happens if we deal with a distribution represented by a graph which is not fully connected?
- Can not be the most general distribution anymore.
- The absence of edges carries important information.

Bayesian Network - Joint Distribution \rightarrow *Graph*

$$p(x_1)p(x_2) p(x_3) p(x_4|x_1, x_2, x_3) p(x_5|x_1, x_3) p(x_6|x_4) p(x_7|x_4, x_5)$$

Introduction to Statistical Machine Learning

Ong & Walder
Data61 | CSIRO
The Australian National
University

мопуапоп

Bayesian Network

rate Notation

Bayesian Network - Joint Distribution
$$o$$
 Graph

$$p(x_1)p(x_2) p(x_3) p(x_4|x_1,x_2,x_3) p(x_5|x_1,x_3) p(x_6|x_4) p(x_7|x_4,x_5)$$

- Draw a node for each conditional distribution associated with a random variable.
- Draw an edge from each conditional distribution associated with a random variable to all other conditional distribution which are conditioned on this variable.

Introduction to Statistical Machine Learning

One & Walder The Australian National

Bayesian Network

©2017
Ong & Walder
Data61 | CSIRO
The Australian National
University

Motivation

Bayesian Network

Plate Notation

- $p(x_1)p(x_2) p(x_3) p(x_4|x_1, x_2, x_3) p(x_5|x_1, x_3) p(x_6|x_4) p(x_7|x_4, x_5)$
- Draw a node for each conditional distribution associated with a random variable.
- Draw an edge from each conditional distribution associated with a random variable to all other conditional distribution which are conditioned on this variable.

Bayesian Network - Graph \rightarrow Joint Distribution

Can we get the expression from the graph?

Introduction to Statistical Machine Learning

Ong & Walder
Data61 | CSIRO
The Australian National
University

мопуапоп

Bayesian Network

Plate Notation

Bayesian Network - Graph \rightarrow Joint Distribution

Can we get the expression from the graph?

- Write a product of probability distributions, one for each associated random variable.

 → Draw a node for each conditional distribution associated with a random variable.
- Add all random variables associated with parent nodes to the list of conditioning variables.

 → Draw an edge from each conditional distribution associated with a random variable to all other conditional distribution which are conditioned on this variable.

$$p(x_1)p(x_2) p(x_3) p(x_4|x_1,x_2,x_3) p(x_5|x_1,x_3) p(x_6|x_4) p(x_7|x_4,x_5)$$

Introduction to Statistical
Machine Learning

Ong & Walder
Data61 | CSIRO
The Australian National
University

Motivation

Bayesian Network

Plate Notation

Bayesian Network

Plate Notation

Independence

 The joint distribution defined by a graph is given by the product, over all of the nodes of the graph, of a conditional distribution for each node conditioned on the variables corresponding to the parents of the node in the graph.

$$p(\mathbf{x}) = \prod_{k=1}^{K} p(x_k \mid \operatorname{pa}(x_k))$$

where $pa(x_k)$ denotes the set of parents of x_k and $\mathbf{x} = (x_1, \dots, x_K)$.

 Restriction: Graph must be a directed acyclic graph (DAG).

© 2017 Ong & Walder Data61 | CSIRO The Australian National University

Motivatio.

Bayesian Network

Plate Notation

Conditional Independence

- Restriction: Graph must be a directed acyclic graph (DAG).
- There are no closed paths in the graph when moving along the directed edges.
- Or equivalently: There exists an ordering of the nodes such that there are no edges that go from any node to any lower numbered node.

 Extension: Can also have sets of variables, or vectors at a node.

© 2017 Ong & Walder Data61 | CSIRO The Australian National University

Motivation

Bayesian Network

0 10 1

Independence

Given

$$p(\mathbf{x}) = \prod_{k=1}^{K} p(x_k \mid \operatorname{pa}(x_k)).$$

• Is $p(\mathbf{x})$ normalised, $\sum_{\mathbf{x}} p(\mathbf{x}) = 1$?

MOHVAHOR

Bayesian Network

Plate Notation

Independence

Given

$$p(\mathbf{x}) = \prod_{k=1}^K p(x_k \mid \operatorname{pa}(x_k)).$$

- Is $p(\mathbf{x})$ normalised, $\sum_{\mathbf{x}} p(\mathbf{x}) = 1$?
- As graph is DAG, there always exists a node with no outgoing edges, say x_i.

$$\sum_{\mathbf{x}} p(\mathbf{x}) = \sum_{\substack{x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_K \\ k \neq i}} \prod_{\substack{k=1 \\ k \neq i}}^K p(x_k \mid \operatorname{pa}(x_k)) \quad \underbrace{\sum_{\substack{x_i \\ = 1}} p(x_i \mid \operatorname{pa}(x_i))}_{=1}$$

because
$$\sum_{x_i} p(x_i \mid pa(x_i)) = \sum_{x_i} \frac{p(x_i, pa(x_i))}{p(pa(x_i))} = \frac{p(pa(x_i))}{p(pa(x_i))} = 1$$

Repeat, until no node left.

Introduction to Statistical

- DATA |
- Motivation

Bayesian Network

Plate Notation

Independence

- Bayesian polynomial regression : observed inputs \mathbf{x} , observed targets \mathbf{t} , noise variance σ^2 , hyperparameter α controlling the priors for \mathbf{w} .
- Focusing on t and w only

$$p(\mathbf{t}, \mathbf{w}) = p(\mathbf{w}) \prod_{k=1}^{N} p(t_n \mid \mathbf{w})$$

© 2017
Ong & Walder
Data61 | CSIRO
The Australian National
University

Motivation

Bayesian Network

Plate Notation

Independence

- Bayesian polynomial regression : observed inputs \mathbf{x} , observed targets \mathbf{t} , noise variance σ^2 , hyperparameter α controlling the priors for \mathbf{w} .
- Focusing on t and w only

$$p(\mathbf{t}, \mathbf{w}) = p(\mathbf{w}) \prod_{k=1}^{N} p(t_n \mid \mathbf{w})$$

• Include also the parameters into the graphical model

$$p(\mathbf{t}, \mathbf{w} \mid \mathbf{x}, \alpha, \sigma^2) = p(\mathbf{w} \mid \alpha) \prod_{k=1}^{N} p(t_n \mid \mathbf{w}, x_n, \sigma^2)$$

Random variables = open circles

Deterministic variables = smaller solid circles

Introduction to Statistical Machine Learning

Ong & Walder
Data61 | CSIRO
The Australian National
University

Motivation

sayesian ivetwork

Plate Notation

- Introduction to Statistical Machine Learning
- © 2017
 Ong & Walder
 Data61 | CSIRO
 The Australian National

Motivatio.

Bayesian Network

Plate Notation

Independence

- Random variables
 - Observed random variables, e.g. t
 - Unobserved random variables, e.g. w, (latent random variables, hidden random variables)
- Shade the observed random variables in the graphical model.

Ong & Walder
Data61 | CSIRO
The Australian National
University

DATA |

Motivation

Bayesian Network

Plate Notation

Conditional Independence

• Prediction : new data point \hat{x} . Want to predict \hat{t} .

Polynomial regression model including prediction.

Definition (Conditional Independence)

If for three random variables a, b, and c the following holds

$$p(a \mid b, c) = p(a \mid c)$$

then a is conditionally independent of b given c.

Notation : $a \perp b \mid c$.

- The above equation must hold for all possible values of c.
- Consequence :

$$p(a, b | c) = p(a | b, c) p(b | c)$$

= $p(a | c) p(b | c)$

- Conditional independence simplifies
 - · the structure of the model
 - the computations needed to perform interference/learning.

DATA |

Bayesian Network

Plate Notation

Conditional Independence

Rules for Conditional Independence

Symmetry: $X \perp\!\!\!\perp Y \mid Z \Longrightarrow Y \perp\!\!\!\perp X \mid Z$

Decomposition : $Y, W \perp\!\!\!\perp X \mid Z \Longrightarrow Y \perp\!\!\!\perp X \mid Z \text{ and } W \perp\!\!\!\perp X \mid Z$

Weak Union : $X \perp\!\!\!\perp Y, W \mid Z \Longrightarrow X \perp\!\!\!\perp Y \mid Z, W$

Contraction : $X \perp \!\!\! \perp W \mid Z, Y$

and $X \perp\!\!\!\perp Y \mid Z \Longrightarrow X \perp\!\!\!\perp W, Y \mid Z$

Intersection : $X \perp \!\!\! \perp Y \mid Z, W$

and $X \perp\!\!\!\perp W \mid Z, Y \Longrightarrow X \perp\!\!\!\perp Y, W \mid Z$

Note: Intersection is only valid for p(X), p(Y), p(Z), p(W) > 0.

iaie ivoiaiion

Conditional Independence

- Can we work with the graphical model directly?
- Check the simplest examples containing only three nodes.
- First example has joint distribution

$$p(a,b,c) = p(a \mid c) p(b \mid c) p(c)$$

Marginalise both sides over c

$$p(a,b) = \sum_{c} p(a | c) p(b | c) p(c) \neq p(a) p(b).$$

• Does not hold : $a \perp b \mid \emptyset$ (where \emptyset is the empty set).

Bayesian Network

Plate Notation

Conditional Independence

Now condition on c.

$$p(a, b | c) = \frac{p(a, b, c)}{p(c)} = p(a | c) p(b | c)$$

• Therefore $a \perp \!\!\! \perp b \mid c$.

Bayesian Network

Plate Notation

Conditional Independence

Graphical interpretation

- In both graphical models there is a path from a to b.
- The node c is called tail-to-tail (TT) with respect to this
 path because the node c is connected to the tails of the
 arrows in the path.
- The presence of the TT-node c in the path left renders a dependent on b (and b dependent on a).
- Conditioning on c blocks the path from a to b and causes a and b to become conditionally independent on c.

Bayesian Network

Plate Notation

Conditional Independence

Second example.

$$p(a,b,c) = p(a) p(c \mid a) p(b \mid c)$$

• Marginalise over *c* to test for independence.

$$p(a,b) = p(a) \sum_{c} p(c \mid a) p(b \mid c) = p(a) p(b \mid a) \neq p(a) p(b)$$

• Does not hold : $a \perp b \mid \emptyset$.

Bayesian Network

Plate Notation

Conditional Independence

Now condition on c.

$$p(a, b | c) = \frac{p(a, b, c)}{p(c)} = \frac{p(a) p(c | a) p(b | c)}{p(c)} = p(a | c) p(b | c)$$

where we used Bayes' theorem $p(c \mid a) = p(a \mid c) p(c) / p(a)$.

• Therefore $a \perp b \mid c$.

Third example. (A little bit more subtle.)

$$p(a,b,c) = p(a) p(b) p(c \mid a,b)$$

Marginalise over c to test for independence.

$$p(a,b) = \sum_{c} p(a) p(b) p(c \mid a,b) = p(a) p(b) \sum_{c} p(c \mid a,b)$$
$$= p(a) p(b)$$

 a and b are independent if NO variable is observed: $a \perp \!\!\!\perp b \mid \emptyset$.

Introduction to Statistical Machine Learning

One & Walder The Australian National

© 2017
Ong & Walder
Data61 | CSIRO
The Australian National
University

Motivation

Bayesian Network

Plate Notation

Conditional Independence

Now condition on c.

$$p(a, b | c) = \frac{p(a, b, c)}{p(c)} = \frac{p(a) p(b) p(c | a, b)}{p(c)} \neq p(a | c) p(b | c).$$

• Does not hold : $a \perp b \mid c$.

Bayesian Network

Plate Notation

Conditional Independence

Graphical interpretation

- In both graphical models there is a path from *a* to *b*.
- The node c is called head-to-head (HH) with respect to this path because the node c is connected to the heads of the arrows in the path.
- The presence of the HH-node c in the path left makes a independent of b (and b independent of a). The unobserved c blocks the path from a to b.

Bayesian Network

tate ivolation

Conditional Independence

Graphical interpretation

- Conditioning on c unblocks the path from a to b, and renders a conditionally dependent on b given c.
- Some more terminology: Node y is a descendant of node x if there is a path from x to y in which each step follows the directions of the arrows.
- A HH-path will become unblocked if either the node, or any of its descendants, is observed.

Bayesian Network

Plate Notation

- Conditional Independence and Factorisation have been shown to be equivalent for all possible configuration of three nodes.
- Are they equivalent for any Bayesian Networks?
- Characterise which conditional independence statements hold for an arbitrary factorisation and check whether a distribution satisfying those statements will have such a factorisation.

Plate Notation

Conditional Independence

Definition (Blocked Path)

A blocked path is a path which contains

- an observed TT- or HT-node, or
- an unobserved HH-node whose descendants are all unobserved.

Bayesian Network

Plate Notation

Conditional Independence

- Consider a general directed graph in which A, B, and C are arbitrary non-intersecting sets of nodes. (There may be other nodes in the graph which are not contained in the union of A, B, and C.)
- Consider all possible paths from any node in A to any node in B.
- Any such path is blocked, if it includes a node such that either
 - the node is HT or TT, and the node is in set C, or
 - the node is HH, and neither the node, nor any of the descendants, is in set C.
- If all paths are blocked, then A is d— separated from B by C, and the joint distribution over all the variables in the graph will satisfy $A \perp \!\!\! \perp B \mid C$.

(Note: *D*-separation stands for 'directional' separation.)

Example

- The path from a to b is not blocked by f because f is a TT-node and unobserved.
- The path from a to b is not blocked by e because e is a HH-node, and although unobserved itself, one of its descendants (node c) is observed.

Introduction to Statistical Machine Learning

©2017
Ong & Walder
Data61 | CSIRO
The Australian National
University

Motivatio.

Bayesian Network

Plate Notation

Introduction to Statistical Machine Learning

© 2017
Ong & Walder
Data61 | CSIRO
The Australian National

Motivatio

Bayesian Network

inc monition

Conditional Independence

Another example

- The path from a to b is blocked by f because f is a TT-node and observed. Therefore, $a \perp b \mid f$.
- Furthermore, the path from a to b is also blocked by e because e is a HH-node, and neither it nor its descendants are observed. Therefore a ⊥ b | f.

1 itile ivoitii

Conditional Independence

$Theorem\ (Factorisation \Rightarrow Conditional\ Independence)$

If a probability distribution factorises according to a directed acyclic graph, and if A, B and C are disjoint subsets of nodes such that A is d-separated from B by C in the graph, then the distribution satisfies $A \perp \!\!\! \perp B \mid C$.

Theorem (Conditional Independence \Rightarrow Factorisation)

If a probability distribution satisfies the conditional independence statements implied by d-separation over a particular directed graph, then it also factorises according to the graph.

Bayesian Network

Plate Notation

- Why is Conditional Independence ⇔ Factorisation relevant?
 - Conditional Independence statements are usually what a domain expert knows about the problem at hand.
 - Needed is a model $p(\mathbf{x})$ for computation.
 - The Conditional Independence \Rightarrow Factorisation provides p(x) from Conditional Independence statements.
 - One can build a global model for computation from local conditional independence statements.

Conditional Independence \Leftrightarrow Factorisation

Introduction to Statistical
Machine Learning

©2017
Ong & Walder
Data61 | CSIRO
The Australian National
University

Motivation

Bayesian Network

Plate Notation

- Given a set of Conditional Independence statements.
- Adding another statement will in general produce other statements.
- All statements can be read as d-separation in a DAG.
- However, there are sets of Conditional Independence statements which cannot be satisfied by any Bayesian Network.

Conditional Independence ⇔ *Factorisation*

The broader picture

- A directed graphical model can be viewed as a filter accepting probability distributions p(x) and only letting these through which satisfy the factorisation property. The set of all possible distribution p(x) which pass through the filter is denoted as DF.
- Alternatively, only these probability distributions $p(\mathbf{x})$ pass through the filter (graph), which respect the conditional independencies implied by the d-separation properties of the graph.
- The d-separation theorem says that the resulting set \mathcal{DF} is the same in both cases.

Ong & Walder Data61 | CSIRO The Australian National University

lotivation

yesian Network

Plate Notation