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Part XV




e Image Segmentation
Cluster the gray value representation of an image

freq

gray values

e Neighbourhood information lost
Need to use the structure of the image.




o Why is the grass wet?




o Why is the grass wet?

e Introduce four Boolean variables :
C(loudy), S(prinkler), R(ain), W(etGrass) € {F(alse), T(rue)}.




Motivation via Independence

e Model the conditional probabilities

&

p(C=F) [ p(C=T)
02 | 08

C|pS=F) |[pS=T C|p(R=F) [p(R=T)
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e If everything depends on everything he Ausvatan Nl
CSRW | p(C, S, R, W) o
FFFF .. |3 |
FFFT >
TTTF
TTTT

p(W, SR, C) :p(W|S,R, C>p(SaRa C)
p(W|S,R,C)p(S|R,C)p(R,C)
=p(W|[S,R,C)p(S|R,C)p(R|C)p(C)

Coms
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p(W) =

> p(W|S.R,C)p(S|R,C)p(R| C)p(C)

p(W) =
D p(WIS,R) D> p(S|C)p(R|C)p(C)
S.R C
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e Two key observations when dealing with probabilities Sy
@ Distributive Law can save operations o | @)

Motivation

alb+c¢) = ab+ac

2 operations 3 operations

@ If some probabilities do not depend on all random variables,
we might be able to factor them out. For example, assume

p(xi,x3 | x2) = plxi | x2) p(xs [ x2),

then (using 3=, p(xs |x2) = 1)

=Y plx,x,x) = pla,xs|x)plx)

X2,%3 X2,43
*pr1|xz (x3|x2) p pr1|x2 X2)
X),X3

o(lx1 11Xz || x51) o(lx111x2])
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e How to deal with more complex expression?

p(x1) p(x2) p(x3) p(xalx, x2, x3) p(xs|x1, x3) p(x6|xa) p(x7]x4, x5)




e How to deal with more complex expression?

p(x1) p(x2) p(x3) p(xalx, x2, x3) p(xs|x1, x3) p(x6|xa) p(x7]x4, x5)

e Graphical models




Probabilistic Graphical Models

Graphical models

e Visualise the structure of a probabilistic model
e Complex computations with formulas — manipulations

with graphs

e Obtain insights into model properties by inspection

e Develop and motivate new models

Bayesian Network

fo fo fe i

Factor Graph

Markov Random
Field
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Probabilistic Graphical Models

e Graph

@ Nodes (vertices) : a random variable

© Edges (links, arcs; directed or undirected) : probabilistic

relationship

e Directed Graph : Bayesian Network (also called Directed
Graphical Model) expressing causal relationship between

variables

e Undirected Graph : Markov Random Field expressing soft

constraints between variables

e Factor Graph : convenient for solving inference problems
(derived from Bayesian Networks or Markov Random
Fields).

Bayesian Network

fa

fo fe i

Factor Graph

Markov Random
Field
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p(“v b,C) :p(c|a, b)p(a, b) :p(c|aa b)p(b|a)p(a)




Bayesian Network

p(a,b,c) :p(c|a,b)p(a,b) :p(c|a,b)p(b|a)p(a)

@ Draw a node for each conditional distribution associated
with a random variable.

@ Draw an edge from each conditional distribution
associated with a random variable to all other conditional
distribution which are conditioned on this variable.

a

(=

e We have chosen a particular ordering of the variables !
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Bayesian Network

e General case for K variables

P(Xu e ,XK) ZP(XK \XL, e ,XK—l) .- -P(xz \XL)P(Xl)

e The graph of this distribution is fully connected. (Prove it.)

e What happens if we deal with a distribution represented by
a graph which is not fully connected?

e Can not be the most general distribution anymore.
e The absence of edges carries important information.
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p(x1)p(x2) p(x3) p(xalxr, x2,x3) p(xs|x1, x3) p(xsxa) p(x7]xs, X5) @
b1
N~




Bayesian Network - Joint Distribution — Graph

p(x1)p(x2) p(x3) p(xalxr, x2, x3) p(xs|x1, x3) p(xelxa) p(a7]xs, xs)

@ Draw a node for each conditional distribution associated
with a random variable.

@ Draw an edge from each conditional distribution

associated with a random variable to all other conditional
distribution which are conditioned on this variable.
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Bayesian Network - Joint Distribution — Graph

p(x1)p(x2) p(x3) p(xalxr, x2, x3) p(xs|x1, x3) p(xelxa) p(a7]xs, xs)

@ Draw a node for each conditional distribution associated
with a random variable.

@ Draw an edge from each conditional distribution

associated with a random variable to all other conditional
distribution which are conditioned on this variable.
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Z1

T2 T3

T4 L5

x6 Z7

Can we get the expression from the graph?




Bayesian Network - Graph — Joint Distribution

Can we get the expression from the graph?

@ Write a product of probability distributions, one for each
associated random variable. <+ Draw a node for each
conditional distribution associated with a random variable.

@ Add all random variables associated with parent nodes to
the list of conditioning variables. < Draw an edge from
each conditional distribution associated with a random
variable to all other conditional distribution which are
conditioned on this variable.

p(x1)p(x2) p(x3) p(xa|x1, x2,x3) p(xs]x1, x3) p(x6|x4) p(x7|x4, X5)
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Bayesian Network - Joint Distribution <> Graph

e The joint distribution defined by a graph is given by the
product, over all of the nodes of the graph, of a conditional
distribution for each node conditioned on the variables
corresponding to the parents of the node in the graph.

K

p(x) = [ [ (x| palxo))

k=1

where pa(x;) denotes the set of parents of x; and
X = (Xl,‘ .. ,)CK).

e Restriction : Graph must be a directed acyclic graph
(DAG).
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Bayesian Network - Joint Distribution <> Graph

e Restriction : Graph must be a directed acyclic graph
(DAG).

e There are no closed paths in the graph when moving
along the directed edges.

e Or equivalently: There exists an ordering of the nodes
such that there are no edges that go from any node to any
lower numbered node.

e Extension: Can also have sets of variables, or vectors at a
node.
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e Given <
p(x) = [ [ P | paxc))-
k=1
e Is p(x) normalised, ) p(x) =17




Bayesian Network - Joint Distribution <> Graph

e Given B
x) = [ [ p(x | paxi))
k=1

e Is p(x) normalised, > p(x) = 1?
e As graph is DAG, there always exists a node with no
outgoing edges, say x;.

ZP(X) = Z Hp xi | pa(x)) Zp x; | pa(x;))

Xl yeeo s Xim 1y Xid 15 7xl<k¢1

=1

Pt _ plais)
20 peal)) = plpaGe)) = 1

because inp(x,- | pa(x;)) =
e Repeat, until no node left.
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Bayesian Network - Plate Notation

e Bayesian polynomial regression : observed inputs X,
observed targets t, noise variance o2, hyperparameter o
controlling the priors for w.

e Focusing on t and w only
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Bayesian Network - Plate Notation

e Bayesian polynomial regression : observed inputs X,
observed targets t, noise variance o2, hyperparameter o

controlling the priors for w.

e Focusing on t and w only

tn

A plate.
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Bayesian Network - Plate Notation

e Include also the parameters into the graphical model

N

pt.w|X,a,0%) = p(w|a) [T p(t | W, 50, 0%)
k=1

Random variables = open circles
Deterministic variables = smaller solid circles

 S—
T «
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Bayesian Network - Plate Notation

e Random variables
e Observed random variables, e.g. t
e Unobserved random variables, e.g. w,
(latent random variables, hidden random variables)
e Shade the observed random variables in the graphical
model.

T [0
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e Prediction : new data point x. Want to predict . e Al Natoncl
r 7
- o T ) L e
pG,t,W|x,X,a,a ) = Hp(tn |x”7w’0 ) p(W|0¢)p(f|x,w,a ) ~
Lk=1
)
xn 5% Plate Notation
W
ln #
\ NA

x
o2 'Uf:
Polynomial regression model including prediction.
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Definition (Conditional Independence) fen

If for three random variables «, b, and ¢ the following holds um | @
plalb,c)=p(alc)

then a is conditionally independent of 4 given c.

Notation : a 1L b|ec. P

e The above equation must hold for all possible values of c.
e Consequence :

pla,be) = plal b,c) plb| c)
—plal)p(b]c)

e Conditional independence simplifies

e the structure of the model
o the computations needed to perform interference/learning.
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Rules for Conditional Independence

Symmetry : X1lY Z=YLlX|Z

Decomposition : YWIlX|Z=YLlLX|ZandW L X|Z

Weak Union : XLYW|Z=XL1Y|ZW P

Contraction : XLw|zY

andX LY|Z=X LW, Y|Z
Intersection : XLy|z,w

andX LW|Z,Y =X 1Y W|Z

Note: Intersection is only valid for p(X),p(Y), p(Z),p(W) > 0.

5690f 788



Bayesian Network - Conditional Independence

e Can we work with the graphical model directly?

e Check the simplest examples containing only three nodes.

e First example has joint distribution

pla;,b,c) = plalc)p(blc)p(c)

e Marginalise both sides over ¢

=Yrla )plc) # pla) p(b).

@ Does nothold : a I b |0 (where 0 is the empty set).

Cc

)
(=)
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e Now condition on c.

pla,b,c)

P(a,b|0)=W

=plalc)p(b|c)

e Thereforea L b|c.




Bayesian Network - Conditional Independence

Graphical interpretation
e In both graphical models there is a path from a to b.

e The node c is called tail-to-tail (TT) with respect to this
path because the node c is connected to the tails of the
arrows in the path.

e The presence of the TT-node c in the path left renders a
dependent on b (and b dependent on a).

e Conditioning on ¢ blocks the path from a to » and causes a

and b to become conditionally independent on c.

Nota L b |0 alblc
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e Second example. &

pla,b,c) = p(a)p(c|a)p(b]c)

e Marginalise over c to test for independence.

Conditional
Independence

pla,b) =p(a)y_ p(c|a)p(b|c) = p(a) p(b|a) # p(a) p(b)

c

e Does nothold : a 1 b|0.

a c b

O—0O—0
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o Now condition on c.

plab.e) _pl@pelapble) _ oo

plable) == )

where we used Bayes’ theorem p(c|a) = p(a|c) p(c)/p(a).
o Thereforea L b|c.

O—e—O
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University
— e
pla,b,c) = p(a) p(b) plc|a,b) e
e Marginalise over c to test for independence.

Zp (cla,b) = Zp |a,b)

Conditional

= p (a) p (b ) Independence
e a and b are independent if NO variable is observed:
al bl
a b
C
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e Now condition on c.

_plabo) _p@pbipelab) , o
plab|e) = PO = POPERECED) 2 plalc)p(o o)

e Doesnothold:a L b|c.

a b
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Graphical interpretation
DATA
e In both graphical models there is a path from a to b. o @

e The node c is called head-to-head (HH) with respect to
this path because the node c is connected to the heads of
the arrows in the path.
Conditional

e The presence of the HH-node c in the path left makes a Indopendonce
independent of b (and b independent of a). The
unobserved c¢ blocks the path from a to .

a b a b

c

al b|0 Nota L b|c
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Graphical interpretation

e Conditioning on ¢ unblocks the path from « to b, and o @
renders a conditionally dependent on b given c.

e Some more terminology: Node y is a descendant of node
x if there is a path from x to y in which each step follows
the directions of the arrows. Conditional

o A HH-path will become unblocked if either the node, orany
of its descendants, is observed.

a f

¢ c

Nota L b|c Nota L f|e
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e Conditional Independence and Factorisation have been
shown to be equivalent for all possible configuration of
three nodes.

e Are they equivalent for any Bayesian Networks?

e Characterise which conditional independence statements
hold for an arbitrary factorisation and check whether a
distribution satisfying those statements will have such a
factorisation.

Conditional
Independence
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A blocked path is a path which contains
e an observed TT- or HT-node, or

e an unobserved HH-node whose descendants are all
unobserved.
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e Consider a general directed graph in which A, B, and C are -
arbitrary non-intersecting sets of nodes. (There may be i@
other nodes in the graph which are not contained in the

union of A, B, and C.)
e Consider all possible paths from any node in A to any
node in B. Conditional

Independence
e Any such path is blocked, if it includes a node such that /
either

e the node is HT or TT, and the node is in set C, or
e the node is HH, and neither the node, nor any of the
descendants, is in set C.
o If all paths are blocked, then A is d— separated from B by
C, and the joint distribution over all the variables in the
graph will satisfy A L B|C.

(Note: D-separation stands for ‘directional’ separation.)
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Bayesian Network - D-separation

Example

e The path from a to b is not blocked by f because f is a
TT-node and unobserved.

e The path from a to b is not blocked by e because ¢ is a
HH-node, and although unobserved itself, one of its
descendants (node c) is observed.

a f
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Another example

7
e The path from a to b is blocked by f because f is a 5" @
TT-node and observed. Therefore, a L b|f.

e Furthermore, the path from a to b is also blocked by e
because e is a HH-node, and neither it nor its descendants
are observed. Therefore a L b |f. Conditional

Independence
a f

5830f 788
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If a probability distribution factorises according to a directed
acyclic graph, and if A, B and C are disjoint subsets of nodes
such that A is d-separated from B by C in the graph, then the o
distribution satisfies A 1L B| C. Independence

Theorem (Conditional Independence = Factorisation)

If a probability distribution satisfies the conditional
independence statements implied by d-separation over a
particular directed graph, then it also factorises according to
the graph.

5840f 788
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Why is Conditional Independence < Factorisation relevant?

e Conditional Independence statements are usually what a
domain expert knows about the problem at hand. —
e Needed is a model p(x) for computation. s

e The Conditional Independence = Factorisation provides
p(x) from Conditional Independence statements.

e One can build a global model for computation from local
conditional independence statements.
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Conditional Independence < Factorisation

e Given a set of Conditional Independence statements.

e Adding another statement will in general produce other
statements.

o All statements can be read as d-separation in a DAG.

e However, there are sets of Conditional Independence
statements which cannot be satisfied by any Bayesian
Network.
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e A directed graphical model can be viewed as a filter -
accepting probability distributions p(x) and only letting a1 @

these through which satisfy the factorisation property. The
set of all possible distribution p(x) which pass through the
filter is denoted as DF.

e Alternatively, only these probability distributions p(x) pass Conditional
through the filter (graph), which respect the conditional e
independencies implied by the d-separation properties of
the graph.

e The d-separation theorem says that the resulting set DF is
the same in both cases.
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